(3x^2+2)=64

Simple and best practice solution for (3x^2+2)=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+2)=64 equation:



(3x^2+2)=64
We move all terms to the left:
(3x^2+2)-(64)=0
We get rid of parentheses
3x^2+2-64=0
We add all the numbers together, and all the variables
3x^2-62=0
a = 3; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·3·(-62)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{186}}{2*3}=\frac{0-2\sqrt{186}}{6} =-\frac{2\sqrt{186}}{6} =-\frac{\sqrt{186}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{186}}{2*3}=\frac{0+2\sqrt{186}}{6} =\frac{2\sqrt{186}}{6} =\frac{\sqrt{186}}{3} $

See similar equations:

| -4.5x-27=45 | | 2x-8=2x/5 | | 2+6h+8+4hh=8 | | 6(x-2)=4x-8 | | 5(b+8)=18 | | 2.2594x-4)=-2+10x+12 | | 0.4x15=39.8 | | 33/4+x=51/2 | | 33=v7+ 26 | | 16=−5x+3x−2 | | r=-0.89 | | 8x^2-40/4=470 | | 8.3/5=-4x+5.3/5 | | 8.3/5=-4x+5.3/ | | 7x-3+5x-14=180 | | 4x^2/2+10/2=5 | | x=5002.25-2942.5 | | 63=r/4 | | 3x+4(4x+3)=30x-2(11-3) | | x=5885*0.85 | | 2.5x−10+0.75x=2+2.5x+3−0.5x | | 2j-12=25 | | x=4675-2942.500 | | 4(d−75)=96 | | 3x^2-8=56 | | x=5500*0.85 | | -127=-50x+23= | | 56=8(b56=8(b+4)+4) | | .20x=120 | | 23−4j=7 | | x=5496.1-3500 | | 9x+7-8=11 |

Equations solver categories